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The study [i] desGribed a method of calculating an exact (in a linear formulation) solu- 
tion of the problem of steady-state three-dimensional waves generated by a local source of 
perturbations in a stratified flow. Sample calculations were performed for a fluid with a 
constant Weisel-Brant frequency using the Bussinesq approximation and the criterion of a "solid 
cover" on the upper boundary of the fluid. The investigation conducted in [i] showed that the 
difference of the exact solution from well-known approximate solutions [2, 3] is significant 
in the neighborhoods of the leading edges of individual modes when the flow velocity exceeds 
the velocity of the waves of the corresponding modes. The asymptotic solutions constructed 
in [4] agree with the results in [i]. In this study, the methods in [I, 4] are used to cal- 
culate internal waves in a two-layer fluid. A simple model of a fluid with a steep density 
curve makes it possible to determine the role of the wavelength dependence of the vertical 
profiles of internal waves in the formation of a field of generated waves. A two-layer strat- 
ification model has been used repeatedly in the problem in question to study both steady [5-7] 
and nonsteady [8, 9] waves. However, only [7] contains examples of calculations of the ampli- 
tudes, and these calculations were performed with approximate asymptotic formulas. 

Here, we will examine a flow of an inviscid incompressible fluid which is borderless in 
the horizontal directions. The fluid flows with a constant velocity c in the positive direc- 
tion of the x axis and consists of two layers: the density and thickness of the top layer are 
Pl and HI; the density and thickness of the bottom layer are P2 and H 2. Meanwhile, Pl < P2. 
Let a wave generator be a point source of the intensity Q. The generator is located a dis- 
tance H a from the interface. In a linear formulation, the wave motions of the fluid created 
by the source are described by the Poisson equation for the potential of the perturbed 
velocities 

a r  = QS(x, y, z - H~) (--H~ < z < H~, z =/: O) ( ~ ) 

with the boundary conditions 

L T = 0  (z=H~), 0~/0z=0 (z=--H2),  (2) 
to which we must add the radiation condition - the absence of wave disturbances upflow - and 
the condition of continuity of the functions 8~/8z and p0(z)L~ on the undisturbed interface 
between the layers (z = 0). Here, L = c282/8x 2 + gS/Sz; g is acceleration due to gravity; 
P0(z) = Pl at z > 0 and p0(z) = P2 at z < 0; 5(.) is the delta function. 

Following [i], we find an expression for the vertical component of the perturbed veloci- 
ties w = 3~/8z in the form of the sum of single integrals: 

w (x, y, z) = -~ Po (H3) wol + w ~  + w,~ , 

z~/2 

w~l = J' F~ (0; R,: o), z) dO, 
-z~/~ 

F~(0;  R~ (% z) = - -  H(r~n) H [cos (0 - -  co)] Wn(z; O) Wnz(Ha; 0 ) s i n  (RAn),  

~ = ~-~ ,!" w ~  (~; o) w~ (Hs; 0) [H (~)  G~ (nA~) + H (-- r~) G~ (RA~)I a0, 
-~/2 

G1 (u) = ~ t (t 2 + t l  -1  exp  (-- J u J t) dt, ai (u) = ~ t ( t2§ t )  -1  exp  (iut) dt. 
0 0 

(3) 
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Here, R and w are polar coordinates of the horizontal plane (x, y); A n = Irnl cos (G - w); the 
functions Gl(u) and Gi(u) are expressed [i] through integral exponential functions; H(.) is 
the Heaviside unit function; ~n = rn 2(6) and Wn(z; 0) are eigenvalues(B0 > 8i > ..-) and ortho- 

H I 
normalized eigenfunctions kZH(~ p~ WnWmdz=8$' 6~ is the Kronecker symbol) of the homogene- 

ous boundary-value problem 

W ~  - -  ~ W = 0 ( - -H~  < z < H~, z =/= 0),  

w ~ -  •  = 0 (z = H O ,  W = 0 (z = - - / /~ ) ;  ( 4 )  

W and  oo(Wz - cW) a r e  c o n t i n u o u s  a t  t h e  p o i n t  z = O; K = g ( c  c o s O ) - : .  P r o b l e m  ( 4 )  h a s  a d e -  
numerable number of real eigenvalues, these eigenvalues being solutions of the dispersion 
relation 

~(i + ? t h  r H l t h  rH~) - -  •  r i l l  + th  rH~) + 
(5) q - ~ z e  th  rHl th  tHe = O, r = ~ l / 2 ,  y = Pl/P~, e : t - - %  

A t  n > 2,  t h e  e i g e n v a t u e s  ~ n ( 0 )  < 0 a t  a l l  O. 

I n  Eq.  ( 3 ) ,  t h e  t e r m  w01 d e s c r i b e s  t h e  c o n t r i b u t i o n  o f  t h e  s u r f a c e  mode t o  t h e  wave  f i e l d ,  
w h i l e  w l l  d e s c r i b e s  t h e  c o n t r i b u t i o n  o f  t h e  i n t e r n a l  mode .  The r e m a i n i n g  t e r m s  o f  t h e  t w o -  
l a y e r  m o d e l  a r e  n o n w a v e  t e r m s ,  and  t h e y  c a n  be  i g n o r e d  a t  l a r g e  d i s t a n c e s  f r o m  t h e  wave  g e n e r -  
a t o r  b e c a u s e  Wn2 = O ( r  -2 )  a t R  § ~ (n  ~ 2 )  [ 1 0 ] .  T h i s  e s t i m a t e  i s  a l s o  v a l i d  f o r  t h e  i n t e g r a l s  
Wn2 (n  = 0 ,  1)  i n  t h o s e  c a s e s  when t h e  f l o w  v e l o c i t y  c < c n .  H e r e ,  c n = / g / < n "  The  q u a n t i t i e s  
<0 and  ~ l  (~0 < ~1)  a r e  s o l u t i o n s  o f  Eq.  ( 5 )  a t  ~ = 0.  I f  c >  c n (n  = 0,  1 ) ,  t h e n  t h e  c o n t r i b u -  
t i o n  o f  t h e  t e r m  Wne i n  t h e  n e i g h b o r h o o d  o f  t h e  b o u n d a r y  o f  t h e  wave  r e g i o n  ~ = a r c s i n  ( C n / C )  
i f  O(R - 2 1 3 )  [ 1 ] .  F e a t u r e s  o f  t h e  c o n t r i b u t i o n  o f  t h e  i n t e g r a l  Wnl (n  = 0,  1) w e r e  d e s c r i b e d  
i n  [ 1 ] .  We n o t e  o n l y  t h a t  i n  e a r l i e r  s t u d i e s ,  e x p r e s s i o n s  f o r  t h e  f i e l d  w ( x ,  y ,  z )  w h i c h  w e r e  
a s y m p t o t i c  a t  R ~ ~ w e r e  r e p r e s e n t e d  a s  t h e  sum o f  o n l y  t h e s e  t e r m s  and  t h e i r  s u b s e q u e n t  e s t i -  
m a t e s  o b t a i n e d  by  t h e  s t a t i o n a r y - p h a s e  m e t h o d .  

To c h e c k  t h e  m o d e l ,  we c o m p a r e d  t h e o r e t i c a l  c a l c u l a t i o n s  w i t h  d a t a  f r o m  a l a b o r a t o r y  e x -  
p e r i m e n t  [ 1 1 ] .  The  s o l i d  l i n e s  i n  F i g .  1 show t h e  t h e o r e t i c a l  v a l u e s  o f  wave  a m p l i t u d e  on t h e  
i n t e r f a c e  o f  an  o v o i d  w i t h  a m i d s e c t i o n  r a d i u s  R m = 0 . 0 1  and  a r a t i o  L/R  m = 12.  The r e s t  o f  
the parameters had the following values: H i = 0.09, H 2 = 0.3, H~ = 0.02 m, c = 0.223 m/sec, 
u = 0.8, a - y = 0.15 m, b - y = 0.25 m. In the theoretical calculations, the ovoid was mod- 
eled by a source-sink system. The parameters of this system were determined just as for an 
infinite uniform liquid [12]. The expression for the displacement ~ was derived from (3) by 
means of the kinematic relation cSg/Sx = w. Analysis of Fig. 1 shows satisfactory agreement 
between the theory and experiment. The increase in the deviation of the corresponding curves 
with an increase in x and y is evidently due to the fact that the theoretical model did not 
consider the transience of the wave generation and dissipation and the fact that an idealized 
scheme was used for the wave generator. 

Equations (3) make it possible to calculate the entire region of the wave field. How- 
ever, it is more economical to use asymptotic solutions at large distances from the wave 
generator. 
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In the ease c > Cn, the principal disturbances inside the wave region are described by 
the integral Wnl [i]. The principal term of the asymptote of this integral is determined by 
the contribution of the stationary point [9]. In the neighborhood of the leading edge, the 
terms Wnl and Wn2 are of the same order of magnitude [I], and the asymptote of the complete 
solution (3) is expressed through the Airy function [4]. It can be shown that at c > Cn, the 
uniform estimate of the contribution of the n-th mode (n = 0.i) has the form 

w. = - -  Q~ (H~) H - ' : ~  �9 ( - -  ~ m  ~) W. ~; O) X 

(6) 
O(R-~), 

. = [3s  n ( o -  

where the right sides are calculated at the stationary point of the solutions of the equation 
Ane' = 0. At BR 213 >> i, replacement of the derivative of the Airy function in (6) by its 
asymptotic expression allows (6) to be changed to a form which coincides completely with the 
asymptotic estimate obtained by the stationary-phase method. Figures 2 and 3 show examples 
of calculation of the contribution of the internal mode according to exact formulas (3) (solid 
lines) and asymptotic formula (6) (dashed lines). The dotted and dot-dash lines show the con- 
tribution of the term w~l and its asymptote according to the stationary-phase method. The 
calculations were performed with H I = i00 m, H 2 = 3900 m, c = 3 m/sec, Q = 1 sec -l, 7 = 0.996; 
for Fig. 2, z = 0 m, a - y = 200 m, b - y = i000 m. The values of H~ (m) are indicated next 
to the curves; H~ = -50 m, y = i000 m for Fig. 3, and values of z (m) are given around the 
lines. It must be noted that inside the wave region at sufficiently large distances R, the 
stationary-phase method gives better estimates of the characteristics of the generated waves 
than do the single integrals Wnl. 

Analysis of Figs. 2 and 3 shows that the range of application of the asymptotic formulas 
depends considerably on the parameters z and H 3, With an increase in the depth of immersion 
of the source (Fig. 2), significant wave disturbances tend to be located closer to the leading 
edge, indicated by the arrow. In this case, there is an increase in the difference between 
the exact and asymptotic solutions. The same result is obtained with increasing distance 
from the interface (Fig. 3) when the position of the source is fixed. 

This effect is connected with the dependence of the amplitude factor ~n(Z, H 3, 0) = 
Wn(z; 0)Wnz(H3; e) on the wave angle 0. This dependence is exponential in character, and in 
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the bottom layer of fluid ~n(Z H3; 8) ~ exp [rn(8)(z + Ha)] at -rn(8)(z - H a) >> i. It is 
known [I] that rn(8) § ~ at 18i + ~/2. Considering this, it might be possible to construct a 
more accurate asymptotic estimate (3) if we use the descent approach. The use of this approach 
is attended by serious obstacles, however, since it requires the solution of the equation 
(d/dS){rn(0)[a+ H a +JR cos(@ -in)]} = 0 in the complex region of values of 8. Let 6 = 
Iz -H3|/ R <<< 1 and 8 = 8 0 is a simple stationary point (dAn/d8 = 0 at 8 = 8 0) when 6 = 0. 
Then the phase S n of the asymptotic estimate has the form 

[6r 0(0o)] / 
Sn=R A~(0 o ) + ~  --~/4+o@). 

2%o (%) J 
It follows from here in particular that an estimate obtained by the descent method gives 
larger values; of wavelength [An8 8 (8 0) < 0] than the stationary-phase method. This observation 
is consistent with the results of numerical calculations shown in Figs. 2 and 3. 
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CAUCHY INTERNAL WAVE SCATTERING BY DENSITY FIELD INHOMOGENEITIES 

S. P. Budanov, A. S. Tibilov, and V. A. Yakovlev UDC 532.593 

The stationary problem of internal wave (IW) scattering by density field inhomogeneities 
was considered in a linear formulation in [i] in an unbounded medium with a constant Brunt- 
V~is~il~ frequency. The important role is shown for this mechanism in the IW energy redis- 
tribution between different modes. Domains are defined in which the scattered IW amplitude 
is substantially different from zero. The corresponding nonstationary problem is discussed 
in this paper. 

Let IW characterized by the density p~(r, t) and velocity U~(r, t) fields exist in a me- 
dium. At the time t = 0 local "mixing" (spoilage of the ~ and U~ field distributions) of 
the medium occur in a domain of space F I. Neglecting rotation of the earth and the viscosity 
forces in a Boussinesq approximation, this nonstationary problem has the form 

(p, U} = Q (V), V l,=0 IV+, r m,, 
=[gi, r~D,, (i) 

{p+, �9 r ~ D i, 
Lp {p, U} = ~ (p, U), Plt=o= Pi, r ~ D , ,  

�9 O g [kAp-- Va__Pl; L o ap _ Po N2w; ~ (p ,  U )  - -  - -  U V p ;  
where L u  ~-- ~ AU + ~'o ' Oz I --" Ot g 

Q (U)~-~_ -- curl curl t [(U.V) U]. 
The solution of the system (I) can be represented by the sum of two components, one of 

which describes the problem of the collapse of the intrusion zone in a stratified fluid, and 
the other the interaction of background IW with this zone. The collapse problem has been in- 
vestigated well (see, e.g., [2]). It is known [3] that the solution of the Collapse problem 
with viscosity taken into account for large times (the third stage of collapse) is a density 
field inhomogeneity in the form Of a spot of mixed fluid that exists sufficiently long, dis- 
sipates extremely slowly at the level of its density. We assume that the geometric size of 
the domain DI and the degree of fluid mixing in it are such that the concluding stage of col- 
lapse sets in sufficiently rapidly. Then, following [i], we consider that the domain D that 
occurs is a density field inhomogeneity that does not change with time and is at rest. Con- 
sequently, the problem of background IW interaction with the domain D can be considered as a 
background IW scattering problem by inhomogeneities of the density field Pi0 with initial con- 
ditions. Its solution can also be represented in the form of the sum of two components, one 
of which described the unperturbed IW field (we consider it known), and the other the intrin- 
sically scattered field characterized by the velocity us(r, t) and the density ps(r, t), where 
Uslt= 0 = 0 and PsIt=0 = 0. As in [i], we limit ourselves in this paper to a single scattering 
approximation (Born approximation) within whose framework U s and Ps satisfy the boundary value 
problem 

Lv{Ps, Us} = 0 ,  Ls{p s, Us} = ~(Pio,U+), Ps, Ush,, ~'--~0- (2) 
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